积分的比较性质积分的比较性质允许我们通过比较被积函数来比较积分值。 基本定理数学定理定理是数学中经过严格证明的命题,是数学推理的基础。定理通常包含条件和结论,是数学知识体系的重要组成部分。定理 5设 f(x)f(x)f(x) 和 g(x)g(x)g(x) 在 [a,b][a, b][a,b] 上连续,且 f(x)≤g(x)f(x) \leq g(x)f(x)≤g(x),则:∫abf(x)dx≤∫abg(x)dx\int_a^b f(x) dx \leq \int_a^b g(x) dx∫abf(x)dx≤∫abg(x)dx 应用例子例子:比较 ∫01x2dx\int_0^1 x^2 dx∫01x2dx 和 ∫01xdx\int_0^1 x dx∫01xdx解:在 [0,1][0, 1][0,1] 上,x2≤xx^2 \leq xx2≤x(因为 x2−x=x(x−1)≤0x^2 - x = x(x-1) \leq 0x2−x=x(x−1)≤0)根据比较性质:∫01x2dx≤∫01xdx\int_0^1 x^2 dx \leq \int_0^1 x dx∫01x2dx≤∫01xdx计算得:13≤12\frac{1}{3} \leq \frac{1}{2}31≤21,确实成立上一章节积分中值定理 下一章节积分的绝对值性质 课程路线图1高等数学之函数探秘先修课程函数是高等数学的核心概念,本系列文档系统介绍函数的基本概念、性质和应用。前往课程 2数列先修课程数列是高等数学的基石,本系列文档系统介绍数列的基本概念、性质、极限理论及其应用。前往课程 3高等数学之极限的世界先修课程极限是微积分的基础,也是高等数学中最重要的概念之一。前往课程 4高等数学之连续先修课程连续性知识点的完整学习指南,包含基本概念、间断点分类、初等函数连续性等。前往课程 5一元函数微分学先修课程一元函数微分学的完整学习指南,包含学习路径、核心概念、常见错误和学习建议。前往课程 6一元函数积分学当前课程学习不定积分与定积分的理论和计算,并应用于几何与物理问题。前往课程 下一站数学考研大纲与真题探索函数、极限、微积分等核心概念,为科学与工程领域奠定坚实的数学基础。开始学习