Limit Exercises Basic Concept Exercises Exercise 1 Evaluate the limit lim x → 0 sin 3 x x \lim\limits_{x \to 0} \frac{\sin 3x}{x} x → 0 lim x s i n 3 x .
Reference Answer (2 个标签)
important limits function limit
Solution approach : Use the important limit lim x → 0 sin x x = 1 \lim\limits_{x \to 0} \frac{\sin x}{x} = 1 x → 0 lim x s i n x = 1 .
sin 3 x x = 3 ⋅ sin 3 x 3 x \frac{\sin 3x}{x} = 3 \cdot \frac{\sin 3x}{3x} x s i n 3 x = 3 ⋅ 3 x s i n 3 x , as x → 0 x \to 0 x → 0 , sin 3 x 3 x → 1 \frac{\sin 3x}{3x} \to 1 3 x s i n 3 x → 1 .
Answer : The limit value is 3 3 3 .
Exercise 2 Determine whether the sequence x n = 1 n x_n = \frac{1}{n} x n = n 1 is an infinitesimal sequence.
Reference Answer (2 个标签)
sequence limit infinitesimal
Solution approach : The definition of an infinitesimal sequence is lim n → ∞ x n = 0 \lim\limits_{n \to \infty} x_n = 0 n → ∞ lim x n = 0 .
lim n → ∞ 1 n = 0 \lim\limits_{n \to \infty} \frac{1}{n} = 0 n → ∞ lim n 1 = 0 .
Answer : It is an infinitesimal sequence.
Exercise 3 Use equivalent infinitesimals to evaluate the limit lim x → 0 1 − cos x x 2 \lim\limits_{x \to 0} \frac{1 - \cos x}{x^2} x → 0 lim x 2 1 − c o s x .
Reference Answer (1 个标签)
equivalent infinitesimal
Solution approach : 1 − cos x ∼ x 2 2 1 - \cos x \sim \frac{x^2}{2} 1 − cos x ∼ 2 x 2 , so the limit ≈ x 2 2 x 2 = 1 2 \approx \frac{\frac{x^2}{2}}{x^2} = \frac{1}{2} ≈ x 2 2 x 2 = 2 1 .
Answer : The limit value is 1 2 \frac{1}{2} 2 1 .
Exercise 4 Evaluate the limit lim x → ∞ ( 1 + 2 x ) x \lim\limits_{x \to \infty} \left(1 + \frac{2}{x}\right)^x x → ∞ lim ( 1 + x 2 ) x .
Reference Answer (1 个标签)
important limits
Solution approach : Use the important limit lim x → ∞ ( 1 + a x ) x = e a \lim\limits_{x \to \infty} \left(1 + \frac{a}{x}\right)^x = e^a x → ∞ lim ( 1 + x a ) x = e a .
Here a = 2 a = 2 a = 2 , so the limit is e 2 e^2 e 2 .
Answer : The limit value is e 2 e^2 e 2 .
Exercise 5 Determine the limit of the function f ( x ) = 1 x f(x) = \frac{1}{x} f ( x ) = x 1 as x → 0 + x \to 0^+ x → 0 + , and explain its infinity or infinitesimal nature.
Reference Answer (2 个标签)
infinity infinitesimal
Solution approach : As x → 0 + x \to 0^+ x → 0 + , f ( x ) = 1 x → + ∞ f(x) = \frac{1}{x} \to +\infty f ( x ) = x 1 → + ∞ , which is an infinite quantity.
Answer : The limit does not exist (approaches + ∞ +\infty + ∞ ), it is an infinite quantity.
Operation Rules Exercises Exercise 6 Evaluate the limit lim x → 2 x 2 − 4 x − 2 \lim_{x \to 2} \frac{x^2 - 4}{x - 2} lim x → 2 x − 2 x 2 − 4 .
Reference Answer (1 个标签)
limit operation rules
Solution approach : First simplify, then evaluate the limit.
Detailed steps :
x 2 − 4 x − 2 = ( x − 2 ) ( x + 2 ) x − 2 = x + 2 \frac{x^2 - 4}{x - 2} = \frac{(x-2)(x+2)}{x-2} = x + 2 x − 2 x 2 − 4 = x − 2 ( x − 2 ) ( x + 2 ) = x + 2 (when x ≠ 2 x \neq 2 x = 2 )
lim x → 2 x 2 − 4 x − 2 = lim x → 2 ( x + 2 ) = 4 \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2) = 4 lim x → 2 x − 2 x 2 − 4 = lim x → 2 ( x + 2 ) = 4
Answer : The limit value is 4.
Exercise 7 Evaluate the limit lim x → 0 sin x + x x \lim_{x \to 0} \frac{\sin x + x}{x} lim x → 0 x s i n x + x .
Reference Answer (1 个标签)
limit operation rules
Solution approach : Use the addition rule and important limit.
Detailed steps :
lim x → 0 sin x + x x = lim x → 0 ( sin x x + x x ) \lim_{x \to 0} \frac{\sin x + x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} + \frac{x}{x}\right) lim x → 0 x s i n x + x = lim x → 0 ( x s i n x + x x )
= lim x → 0 sin x x + lim x → 0 1 = \lim_{x \to 0} \frac{\sin x}{x} + \lim_{x \to 0} 1 = lim x → 0 x s i n x + lim x → 0 1
= 1 + 1 = 2 = 1 + 1 = 2 = 1 + 1 = 2
Answer : The limit value is 2.
Exercise 8 Evaluate the limit lim x → ∞ x 2 + 3 x + 1 x 2 + 2 x \lim_{x \to \infty} \frac{x^2 + 3x + 1}{x^2 + 2x} lim x → ∞ x 2 + 2 x x 2 + 3 x + 1 .
Reference Answer (1 个标签)
limit operation rules
Solution approach : Divide numerator and denominator by the highest power of x.
Detailed steps :
x 2 + 3 x + 1 x 2 + 2 x = 1 + 3 x + 1 x 2 1 + 2 x \frac{x^2 + 3x + 1}{x^2 + 2x} = \frac{1 + \frac{3}{x} + \frac{1}{x^2}}{1 + \frac{2}{x}} x 2 + 2 x x 2 + 3 x + 1 = 1 + x 2 1 + x 3 + x 2 1
lim x → ∞ x 2 + 3 x + 1 x 2 + 2 x = lim x → ∞ 1 + 3 x + 1 x 2 1 + 2 x \lim_{x \to \infty} \frac{x^2 + 3x + 1}{x^2 + 2x} = \lim_{x \to \infty} \frac{1 + \frac{3}{x} + \frac{1}{x^2}}{1 + \frac{2}{x}} lim x → ∞ x 2 + 2 x x 2 + 3 x + 1 = lim x → ∞ 1 + x 2 1 + x 3 + x 2 1
= 1 + 0 + 0 1 + 0 = 1 = \frac{1 + 0 + 0}{1 + 0} = 1 = 1 + 0 1 + 0 + 0 = 1
Answer : The limit value is 1.
Infinitesimal Comparison Exercises Exercise 9 Determine the relationship between x 3 x^3 x 3 and x 2 x^2 x 2 as x → 0 x \to 0 x → 0 .
Reference Answer (1 个标签)
comparison of infinitesimals
Solution approach : Calculate lim x → 0 x 3 x 2 \lim_{x \to 0} \frac{x^3}{x^2} lim x → 0 x 2 x 3 to determine the relationship.
Detailed steps :
lim x → 0 x 3 x 2 = lim x → 0 x = 0 \lim_{x \to 0} \frac{x^3}{x^2} = \lim_{x \to 0} x = 0 lim x → 0 x 2 x 3 = lim x → 0 x = 0
Since the limit is 0, x 3 x^3 x 3 is a higher-order infinitesimal than x 2 x^2 x 2 .
Answer : x 3 x^3 x 3 is a higher-order infinitesimal than x 2 x^2 x 2 .
Exercise 10 Use equivalent infinitesimals to evaluate the limit lim x → 0 tan x − sin x x 3 \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} lim x → 0 x 3 t a n x − s i n x .
Reference Answer (1 个标签)
equivalent infinitesimal
Solution approach : Use equivalent infinitesimal substitution to simplify the calculation.
Detailed steps :
As x → 0 x \to 0 x → 0 , tan x ∼ x \tan x \sim x tan x ∼ x , sin x ∼ x \sin x \sim x sin x ∼ x
However, tan x − sin x \tan x - \sin x tan x − sin x cannot be directly substituted and needs further processing
tan x − sin x = sin x cos x − sin x = sin x ( 1 cos x − 1 ) = sin x ⋅ 1 − cos x cos x \tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \sin x \cdot \frac{1 - \cos x}{\cos x} tan x − sin x = c o s x s i n x − sin x = sin x ( c o s x 1 − 1 ) = sin x ⋅ c o s x 1 − c o s x
As x → 0 x \to 0 x → 0 , sin x ∼ x \sin x \sim x sin x ∼ x , 1 − cos x ∼ x 2 2 1 - \cos x \sim \frac{x^2}{2} 1 − cos x ∼ 2 x 2 , cos x → 1 \cos x \to 1 cos x → 1
So tan x − sin x ∼ x ⋅ x 2 2 = x 3 2 \tan x - \sin x \sim x \cdot \frac{x^2}{2} = \frac{x^3}{2} tan x − sin x ∼ x ⋅ 2 x 2 = 2 x 3
Therefore lim x → 0 tan x − sin x x 3 = lim x → 0 x 3 2 x 3 = 1 2 \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{2}}{x^3} = \frac{1}{2} lim x → 0 x 3 t a n x − s i n x = lim x → 0 x 3 2 x 3 = 2 1
Answer : The limit value is 1 2 \frac{1}{2} 2 1 .
Limit Existence Criteria Exercises Exercise 11 Use the squeeze theorem to evaluate the limit lim x → 0 x 2 sin 1 x \lim_{x \to 0} x^2 \sin \frac{1}{x} lim x → 0 x 2 sin x 1 .
Reference Answer (1 个标签)
squeeze theorem
Solution approach : Use the boundedness of the sine function to construct a squeeze inequality.
Detailed steps :
Since − 1 ≤ sin 1 x ≤ 1 -1 \leq \sin \frac{1}{x} \leq 1 − 1 ≤ sin x 1 ≤ 1 , we have − x 2 ≤ x 2 sin 1 x ≤ x 2 -x^2 \leq x^2 \sin \frac{1}{x} \leq x^2 − x 2 ≤ x 2 sin x 1 ≤ x 2
lim x → 0 ( − x 2 ) = lim x → 0 x 2 = 0 \lim_{x \to 0} (-x^2) = \lim_{x \to 0} x^2 = 0 lim x → 0 ( − x 2 ) = lim x → 0 x 2 = 0
By the squeeze theorem, lim x → 0 x 2 sin 1 x = 0 \lim_{x \to 0} x^2 \sin \frac{1}{x} = 0 lim x → 0 x 2 sin x 1 = 0
Answer : The limit value is 0.
Exercise 12 Prove that the sequence x n = n 2 + 1 n 2 + n x_n = \frac{n^2 + 1}{n^2 + n} x n = n 2 + n n 2 + 1 converges and find its limit.
Reference Answer (1 个标签)
sequence limit
Solution approach : First prove that the sequence is monotonically decreasing and bounded below, then find the limit.
Detailed steps :
Prove monotonic decrease: x n + 1 − x n = ( n + 1 ) 2 + 1 ( n + 1 ) 2 + ( n + 1 ) − n 2 + 1 n 2 + n < 0 x_{n+1} - x_n = \frac{(n+1)^2 + 1}{(n+1)^2 + (n+1)} - \frac{n^2 + 1}{n^2 + n} < 0 x n + 1 − x n = ( n + 1 ) 2 + ( n + 1 ) ( n + 1 ) 2 + 1 − n 2 + n n 2 + 1 < 0
Prove bounded below: x n = n 2 + 1 n 2 + n = 1 − n − 1 n 2 + n > 0 x_n = \frac{n^2 + 1}{n^2 + n} = 1 - \frac{n-1}{n^2 + n} > 0 x n = n 2 + n n 2 + 1 = 1 − n 2 + n n − 1 > 0
By the monotone convergence theorem, the sequence converges
Find the limit: lim n → ∞ n 2 + 1 n 2 + n = lim n → ∞ 1 + 1 n 2 1 + 1 n = 1 \lim_{n \to \infty} \frac{n^2 + 1}{n^2 + n} = \lim_{n \to \infty} \frac{1 + \frac{1}{n^2}}{1 + \frac{1}{n}} = 1 lim n → ∞ n 2 + n n 2 + 1 = lim n → ∞ 1 + n 1 1 + n 2 1 = 1
Answer : The sequence converges with limit 1.
Important Limits Exercises Exercise 13 Evaluate the limit lim x → 0 sin 5 x x \lim_{x \to 0} \frac{\sin 5x}{x} lim x → 0 x s i n 5 x .
Reference Answer (1 个标签)
important limits
Solution approach : Use the generalized form of the first important limit.
Detailed steps :
lim x → 0 sin 5 x x = lim x → 0 5 ⋅ sin 5 x 5 x \lim_{x \to 0} \frac{\sin 5x}{x} = \lim_{x \to 0} 5 \cdot \frac{\sin 5x}{5x} lim x → 0 x s i n 5 x = lim x → 0 5 ⋅ 5 x s i n 5 x
= 5 ⋅ lim x → 0 sin 5 x 5 x = 5 ⋅ 1 = 5 = 5 \cdot \lim_{x \to 0} \frac{\sin 5x}{5x} = 5 \cdot 1 = 5 = 5 ⋅ lim x → 0 5 x s i n 5 x = 5 ⋅ 1 = 5
Answer : The limit value is 5.
Exercise 14 Evaluate the limit lim x → ∞ ( 1 + 3 x ) x \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^x lim x → ∞ ( 1 + x 3 ) x .
Reference Answer (1 个标签)
important limits
Solution approach : Use the generalized form of the second important limit.
Detailed steps :
lim x → ∞ ( 1 + 3 x ) x = e 3 \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^x = e^3 lim x → ∞ ( 1 + x 3 ) x = e 3 Answer : The limit value is e 3 e^3 e 3 .
Exercise 15 Evaluate the limit lim x → 0 e x − 1 sin x \lim_{x \to 0} \frac{e^x - 1}{\sin x} lim x → 0 s i n x e x − 1 .
Reference Answer (1 个标签)
equivalent infinitesimal
Solution approach : Use equivalent infinitesimal substitution.
Detailed steps :
As x → 0 x \to 0 x → 0 , e x − 1 ∼ x e^x - 1 \sim x e x − 1 ∼ x , sin x ∼ x \sin x \sim x sin x ∼ x
lim x → 0 e x − 1 sin x = lim x → 0 x x = 1 \lim_{x \to 0} \frac{e^x - 1}{\sin x} = \lim_{x \to 0} \frac{x}{x} = 1 lim x → 0 s i n x e x − 1 = lim x → 0 x x = 1
Answer : The limit value is 1.
Comprehensive Exercises Exercise 16 Determine whether the limit of the function f ( x ) = x 2 − 1 x − 1 f(x) = \frac{x^2 - 1}{x - 1} f ( x ) = x − 1 x 2 − 1 exists at x = 1 x = 1 x = 1 .
Reference Answer (3 个标签)
function limit left-hand limit right-hand limit
Solution approach : Compute the left-hand and right-hand limits separately to see if they are equal.
Detailed steps :
Right-hand limit: lim x → 1 + x 2 − 1 x − 1 = lim x → 1 + ( x − 1 ) ( x + 1 ) x − 1 = lim x → 1 + ( x + 1 ) = 2 \lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^+} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^+} (x+1) = 2 lim x → 1 + x − 1 x 2 − 1 = lim x → 1 + x − 1 ( x − 1 ) ( x + 1 ) = lim x → 1 + ( x + 1 ) = 2
Left-hand limit: lim x → 1 − x 2 − 1 x − 1 = lim x → 1 − ( x − 1 ) ( x + 1 ) x − 1 = lim x → 1 − ( x + 1 ) = 2 \lim_{x \to 1^-} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^-} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^-} (x+1) = 2 lim x → 1 − x − 1 x 2 − 1 = lim x → 1 − x − 1 ( x − 1 ) ( x + 1 ) = lim x → 1 − ( x + 1 ) = 2
Since the left-hand and right-hand limits are equal, the limit exists.
Answer : The limit exists with value 2.
Exercise 17 Prove that the sequence x n = n n + 1 x_n = \frac{n}{n+1} x n = n + 1 n has limit 1.
Reference Answer (1 个标签)
sequence limit
Solution approach : Use the definition of a limit to prove that for any ε > 0 \varepsilon > 0 ε > 0 , there exists N N N such that when n > N n > N n > N , ∣ x n − 1 ∣ < ε |x_n - 1| < \varepsilon ∣ x n − 1∣ < ε .
Detailed steps :
∣ x n − 1 ∣ = ∣ n n + 1 − 1 ∣ = ∣ n − ( n + 1 ) n + 1 ∣ = 1 n + 1 |x_n - 1| = \left|\frac{n}{n+1} - 1\right| = \left|\frac{n-(n+1)}{n+1}\right| = \frac{1}{n+1} ∣ x n − 1∣ = n + 1 n − 1 = n + 1 n − ( n + 1 ) = n + 1 1
To make 1 n + 1 < ε \frac{1}{n+1} < \varepsilon n + 1 1 < ε , we need n + 1 > 1 ε n+1 > \frac{1}{\varepsilon} n + 1 > ε 1 , i.e., n > 1 ε − 1 n > \frac{1}{\varepsilon} - 1 n > ε 1 − 1
Let N = ⌊ 1 ε − 1 ⌋ + 1 N = \left\lfloor \frac{1}{\varepsilon} - 1 \right\rfloor + 1 N = ⌊ ε 1 − 1 ⌋ + 1 , then when n > N n > N n > N , ∣ x n − 1 ∣ < ε |x_n - 1| < \varepsilon ∣ x n − 1∣ < ε
Answer : The sequence limit is 1.
Exercise 18 Determine whether the limit of the function f ( x ) = 1 x f(x) = \frac{1}{x} f ( x ) = x 1 exists at x = 0 x = 0 x = 0 .
Reference Answer (3 个标签)
function limit left-hand limit right-hand limit
Solution approach : Compute the left-hand and right-hand limits separately to see if they are equal.
Detailed steps :
Right-hand limit: lim x → 0 + 1 x = + ∞ \lim_{x \to 0^+} \frac{1}{x} = +\infty lim x → 0 + x 1 = + ∞
Left-hand limit: lim x → 0 − 1 x = − ∞ \lim_{x \to 0^-} \frac{1}{x} = -\infty lim x → 0 − x 1 = − ∞
Since the left-hand and right-hand limits are different, the limit does not exist.
Answer : The limit does not exist.
Summary Symbols Used in This Article Symbol Type Pronunciation/Description Meaning in this context lim \lim lim Mathematical symbol Limit Denotes the limit of a function or sequence → \to → Mathematical symbol Tends to Indicates approaching a value ∞ \infty ∞ Mathematical symbol Infinity Represents infinity e e e Mathematical symbol Base of natural logarithm Mathematical constant, approximately 2.718 sin x \sin x sin x Mathematical symbol Sine function One of the trigonometric functions cos x \cos x cos x Mathematical symbol Cosine function One of the trigonometric functions tan x \tan x tan x Mathematical symbol Tangent function One of the trigonometric functions n n n Mathematical symbol Positive integer Represents the term number in a sequence
中英对照 中文术语 英文术语 音标 说明 极限 limit /ˈlɪmɪt/ 函数或数列在某个点或无穷远处的极限值 函数极限 limit of a function /ˈlɪmɪt əv ə ˈfʌŋkʃən/ 函数在某点的极限 数列极限 limit of a sequence /ˈlɪmɪt əv ə ˈsiːkwəns/ 数列在无穷远处的极限 重要极限 important limits /ɪmˈpɔːrtənt ˈlɪmɪts/ 常用的极限公式和结论 等价无穷小 equivalent infinitesimal /ɪˈkwɪvələnt ˌɪnfɪnɪˈtesɪml/ 具有相同阶数的无穷小量 无穷小 infinitesimal /ˌɪnfɪnɪˈtesɪml/ 极限为零的量 无穷大 infinity /ɪnˈfɪnəti/ 绝对值无限增大的量 极限运算法则 limit operation rules /ˈlɪmɪt ˌɒpəˈreɪʃən ruːlz/ 计算极限的基本规则 无穷小比较 comparison of infinitesimals /kəmˈpærɪsn əv ˌɪnfɪnɪˈtesɪmlz/ 比较无穷小量阶数的方法 夹逼准则 squeeze theorem /skwiːz ˈθɪərəm/ 通过不等式求极限的方法
1 Exploring Functions in Advanced Mathematics
先修课程 Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 2 The World of Limits in Advanced Mathematics
当前课程 Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程