导航菜单

Limit Exercises

Basic Concept Exercises

Exercise 1

Evaluate the limit limx0sin3xx\lim\limits_{x \to 0} \frac{\sin 3x}{x}.

Reference Answer (2 个标签)
important limits function limit

Solution approach: Use the important limit limx0sinxx=1\lim\limits_{x \to 0} \frac{\sin x}{x} = 1.

sin3xx=3sin3x3x\frac{\sin 3x}{x} = 3 \cdot \frac{\sin 3x}{3x}, as x0x \to 0, sin3x3x1\frac{\sin 3x}{3x} \to 1.

Answer: The limit value is 33.

Exercise 2

Determine whether the sequence xn=1nx_n = \frac{1}{n} is an infinitesimal sequence.

Reference Answer (2 个标签)
sequence limit infinitesimal

Solution approach: The definition of an infinitesimal sequence is limnxn=0\lim\limits_{n \to \infty} x_n = 0.

limn1n=0\lim\limits_{n \to \infty} \frac{1}{n} = 0.

Answer: It is an infinitesimal sequence.

Exercise 3

Use equivalent infinitesimals to evaluate the limit limx01cosxx2\lim\limits_{x \to 0} \frac{1 - \cos x}{x^2}.

Reference Answer (1 个标签)
equivalent infinitesimal

Solution approach: 1cosxx221 - \cos x \sim \frac{x^2}{2}, so the limit x22x2=12\approx \frac{\frac{x^2}{2}}{x^2} = \frac{1}{2}.

Answer: The limit value is 12\frac{1}{2}.

Exercise 4

Evaluate the limit limx(1+2x)x\lim\limits_{x \to \infty} \left(1 + \frac{2}{x}\right)^x.

Reference Answer (1 个标签)
important limits

Solution approach: Use the important limit limx(1+ax)x=ea\lim\limits_{x \to \infty} \left(1 + \frac{a}{x}\right)^x = e^a.

Here a=2a = 2, so the limit is e2e^2.

Answer: The limit value is e2e^2.

Exercise 5

Determine the limit of the function f(x)=1xf(x) = \frac{1}{x} as x0+x \to 0^+, and explain its infinity or infinitesimal nature.

Reference Answer (2 个标签)
infinity infinitesimal

Solution approach: As x0+x \to 0^+, f(x)=1x+f(x) = \frac{1}{x} \to +\infty, which is an infinite quantity.

Answer: The limit does not exist (approaches ++\infty), it is an infinite quantity.

Operation Rules Exercises

Exercise 6

Evaluate the limit limx2x24x2\lim_{x \to 2} \frac{x^2 - 4}{x - 2}.

Reference Answer (1 个标签)
limit operation rules

Solution approach: First simplify, then evaluate the limit.

Detailed steps:

  1. x24x2=(x2)(x+2)x2=x+2\frac{x^2 - 4}{x - 2} = \frac{(x-2)(x+2)}{x-2} = x + 2 (when x2x \neq 2)

  2. limx2x24x2=limx2(x+2)=4\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2) = 4

Answer: The limit value is 4.

Exercise 7

Evaluate the limit limx0sinx+xx\lim_{x \to 0} \frac{\sin x + x}{x}.

Reference Answer (1 个标签)
limit operation rules

Solution approach: Use the addition rule and important limit.

Detailed steps:

  1. limx0sinx+xx=limx0(sinxx+xx)\lim_{x \to 0} \frac{\sin x + x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} + \frac{x}{x}\right)

  2. =limx0sinxx+limx01= \lim_{x \to 0} \frac{\sin x}{x} + \lim_{x \to 0} 1

  3. =1+1=2= 1 + 1 = 2

Answer: The limit value is 2.

Exercise 8

Evaluate the limit limxx2+3x+1x2+2x\lim_{x \to \infty} \frac{x^2 + 3x + 1}{x^2 + 2x}.

Reference Answer (1 个标签)
limit operation rules

Solution approach: Divide numerator and denominator by the highest power of x.

Detailed steps:

  1. x2+3x+1x2+2x=1+3x+1x21+2x\frac{x^2 + 3x + 1}{x^2 + 2x} = \frac{1 + \frac{3}{x} + \frac{1}{x^2}}{1 + \frac{2}{x}}

  2. limxx2+3x+1x2+2x=limx1+3x+1x21+2x\lim_{x \to \infty} \frac{x^2 + 3x + 1}{x^2 + 2x} = \lim_{x \to \infty} \frac{1 + \frac{3}{x} + \frac{1}{x^2}}{1 + \frac{2}{x}}

  3. =1+0+01+0=1= \frac{1 + 0 + 0}{1 + 0} = 1

Answer: The limit value is 1.

Infinitesimal Comparison Exercises

Exercise 9

Determine the relationship between x3x^3 and x2x^2 as x0x \to 0.

Reference Answer (1 个标签)
comparison of infinitesimals

Solution approach: Calculate limx0x3x2\lim_{x \to 0} \frac{x^3}{x^2} to determine the relationship.

Detailed steps:

  1. limx0x3x2=limx0x=0\lim_{x \to 0} \frac{x^3}{x^2} = \lim_{x \to 0} x = 0

  2. Since the limit is 0, x3x^3 is a higher-order infinitesimal than x2x^2.

Answer: x3x^3 is a higher-order infinitesimal than x2x^2.

Exercise 10

Use equivalent infinitesimals to evaluate the limit limx0tanxsinxx3\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}.

Reference Answer (1 个标签)
equivalent infinitesimal

Solution approach: Use equivalent infinitesimal substitution to simplify the calculation.

Detailed steps:

  1. As x0x \to 0, tanxx\tan x \sim x, sinxx\sin x \sim x

  2. However, tanxsinx\tan x - \sin x cannot be directly substituted and needs further processing

  3. tanxsinx=sinxcosxsinx=sinx(1cosx1)=sinx1cosxcosx\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \sin x \cdot \frac{1 - \cos x}{\cos x}

  4. As x0x \to 0, sinxx\sin x \sim x, 1cosxx221 - \cos x \sim \frac{x^2}{2}, cosx1\cos x \to 1

  5. So tanxsinxxx22=x32\tan x - \sin x \sim x \cdot \frac{x^2}{2} = \frac{x^3}{2}

  6. Therefore limx0tanxsinxx3=limx0x32x3=12\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{2}}{x^3} = \frac{1}{2}

Answer: The limit value is 12\frac{1}{2}.

Limit Existence Criteria Exercises

Exercise 11

Use the squeeze theorem to evaluate the limit limx0x2sin1x\lim_{x \to 0} x^2 \sin \frac{1}{x}.

Reference Answer (1 个标签)
squeeze theorem

Solution approach: Use the boundedness of the sine function to construct a squeeze inequality.

Detailed steps:

  1. Since 1sin1x1-1 \leq \sin \frac{1}{x} \leq 1, we have x2x2sin1xx2-x^2 \leq x^2 \sin \frac{1}{x} \leq x^2

  2. limx0(x2)=limx0x2=0\lim_{x \to 0} (-x^2) = \lim_{x \to 0} x^2 = 0

  3. By the squeeze theorem, limx0x2sin1x=0\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0

Answer: The limit value is 0.

Exercise 12

Prove that the sequence xn=n2+1n2+nx_n = \frac{n^2 + 1}{n^2 + n} converges and find its limit.

Reference Answer (1 个标签)
sequence limit

Solution approach: First prove that the sequence is monotonically decreasing and bounded below, then find the limit.

Detailed steps:

  1. Prove monotonic decrease: xn+1xn=(n+1)2+1(n+1)2+(n+1)n2+1n2+n<0x_{n+1} - x_n = \frac{(n+1)^2 + 1}{(n+1)^2 + (n+1)} - \frac{n^2 + 1}{n^2 + n} < 0

  2. Prove bounded below: xn=n2+1n2+n=1n1n2+n>0x_n = \frac{n^2 + 1}{n^2 + n} = 1 - \frac{n-1}{n^2 + n} > 0

  3. By the monotone convergence theorem, the sequence converges

  4. Find the limit: limnn2+1n2+n=limn1+1n21+1n=1\lim_{n \to \infty} \frac{n^2 + 1}{n^2 + n} = \lim_{n \to \infty} \frac{1 + \frac{1}{n^2}}{1 + \frac{1}{n}} = 1

Answer: The sequence converges with limit 1.

Important Limits Exercises

Exercise 13

Evaluate the limit limx0sin5xx\lim_{x \to 0} \frac{\sin 5x}{x}.

Reference Answer (1 个标签)
important limits

Solution approach: Use the generalized form of the first important limit.

Detailed steps:

  1. limx0sin5xx=limx05sin5x5x\lim_{x \to 0} \frac{\sin 5x}{x} = \lim_{x \to 0} 5 \cdot \frac{\sin 5x}{5x}

  2. =5limx0sin5x5x=51=5= 5 \cdot \lim_{x \to 0} \frac{\sin 5x}{5x} = 5 \cdot 1 = 5

Answer: The limit value is 5.

Exercise 14

Evaluate the limit limx(1+3x)x\lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^x.

Reference Answer (1 个标签)
important limits

Solution approach: Use the generalized form of the second important limit.

Detailed steps:

  1. limx(1+3x)x=e3\lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^x = e^3

Answer: The limit value is e3e^3.

Exercise 15

Evaluate the limit limx0ex1sinx\lim_{x \to 0} \frac{e^x - 1}{\sin x}.

Reference Answer (1 个标签)
equivalent infinitesimal

Solution approach: Use equivalent infinitesimal substitution.

Detailed steps:

  1. As x0x \to 0, ex1xe^x - 1 \sim x, sinxx\sin x \sim x

  2. limx0ex1sinx=limx0xx=1\lim_{x \to 0} \frac{e^x - 1}{\sin x} = \lim_{x \to 0} \frac{x}{x} = 1

Answer: The limit value is 1.

Comprehensive Exercises

Exercise 16

Determine whether the limit of the function f(x)=x21x1f(x) = \frac{x^2 - 1}{x - 1} exists at x=1x = 1.

Reference Answer (3 个标签)
function limit left-hand limit right-hand limit

Solution approach: Compute the left-hand and right-hand limits separately to see if they are equal.

Detailed steps:

  1. Right-hand limit: limx1+x21x1=limx1+(x1)(x+1)x1=limx1+(x+1)=2\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^+} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^+} (x+1) = 2

  2. Left-hand limit: limx1x21x1=limx1(x1)(x+1)x1=limx1(x+1)=2\lim_{x \to 1^-} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^-} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^-} (x+1) = 2

  3. Since the left-hand and right-hand limits are equal, the limit exists.

Answer: The limit exists with value 2.

Exercise 17

Prove that the sequence xn=nn+1x_n = \frac{n}{n+1} has limit 1.

Reference Answer (1 个标签)
sequence limit

Solution approach: Use the definition of a limit to prove that for any ε>0\varepsilon > 0, there exists NN such that when n>Nn > N, xn1<ε|x_n - 1| < \varepsilon.

Detailed steps:

  1. xn1=nn+11=n(n+1)n+1=1n+1|x_n - 1| = \left|\frac{n}{n+1} - 1\right| = \left|\frac{n-(n+1)}{n+1}\right| = \frac{1}{n+1}

  2. To make 1n+1<ε\frac{1}{n+1} < \varepsilon, we need n+1>1εn+1 > \frac{1}{\varepsilon}, i.e., n>1ε1n > \frac{1}{\varepsilon} - 1

  3. Let N=1ε1+1N = \left\lfloor \frac{1}{\varepsilon} - 1 \right\rfloor + 1, then when n>Nn > N, xn1<ε|x_n - 1| < \varepsilon

Answer: The sequence limit is 1.

Exercise 18

Determine whether the limit of the function f(x)=1xf(x) = \frac{1}{x} exists at x=0x = 0.

Reference Answer (3 个标签)
function limit left-hand limit right-hand limit

Solution approach: Compute the left-hand and right-hand limits separately to see if they are equal.

Detailed steps:

  1. Right-hand limit: limx0+1x=+\lim_{x \to 0^+} \frac{1}{x} = +\infty

  2. Left-hand limit: limx01x=\lim_{x \to 0^-} \frac{1}{x} = -\infty

  3. Since the left-hand and right-hand limits are different, the limit does not exist.

Answer: The limit does not exist.


Summary

Symbols Used in This Article

SymbolTypePronunciation/DescriptionMeaning in this context
lim\limMathematical symbolLimitDenotes the limit of a function or sequence
\toMathematical symbolTends toIndicates approaching a value
\inftyMathematical symbolInfinityRepresents infinity
eeMathematical symbolBase of natural logarithmMathematical constant, approximately 2.718
sinx\sin xMathematical symbolSine functionOne of the trigonometric functions
cosx\cos xMathematical symbolCosine functionOne of the trigonometric functions
tanx\tan xMathematical symbolTangent functionOne of the trigonometric functions
nnMathematical symbolPositive integerRepresents the term number in a sequence

中英对照

中文术语英文术语音标说明
极限limit/ˈlɪmɪt/函数或数列在某个点或无穷远处的极限值
函数极限limit of a function/ˈlɪmɪt əv ə ˈfʌŋkʃən/函数在某点的极限
数列极限limit of a sequence/ˈlɪmɪt əv ə ˈsiːkwəns/数列在无穷远处的极限
重要极限important limits/ɪmˈpɔːrtənt ˈlɪmɪts/常用的极限公式和结论
等价无穷小equivalent infinitesimal/ɪˈkwɪvələnt ˌɪnfɪnɪˈtesɪml/具有相同阶数的无穷小量
无穷小infinitesimal/ˌɪnfɪnɪˈtesɪml/极限为零的量
无穷大infinity/ɪnˈfɪnəti/绝对值无限增大的量
极限运算法则limit operation rules/ˈlɪmɪt ˌɒpəˈreɪʃən ruːlz/计算极限的基本规则
无穷小比较comparison of infinitesimals/kəmˈpærɪsn əv ˌɪnfɪnɪˈtesɪmlz/比较无穷小量阶数的方法
夹逼准则squeeze theorem/skwiːz ˈθɪərəm/通过不等式求极限的方法

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    当前课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程

搜索