导航菜单

Sine Series

Definition

Sine Series Definition

The series n=0(1)n(2n+1)!x2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} is called the sine series.

符号说明
SymbolTypePronunciation/ExplanationMeaning in This Article
\sumGreek letterSigmaSummation symbol, representing series
\inftyMathematical symbolInfinityRepresents infinite series, infinite number of terms
n!n!Mathematical symbolFactorialn factorial, n!=n×(n1)××1n! = n \times (n-1) \times \cdots \times 1

Convergence

Sine Series Convergence

For any real number xx, the series converges, and its sum is:

n=0(1)n(2n+1)!x2n+1=sinx\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = \sin x

证明

Using the ratio test:

an+1an=(1)n+1(2(n+1)+1)!x2(n+1)+1(2n+1)!(1)nx2n+1=x2(2n+2)(2n+3)\frac{a_{n+1}}{a_n} = \frac{(-1)^{n+1}}{(2(n+1)+1)!} x^{2(n+1)+1} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} = -\frac{x^2}{(2n+2)(2n+3)}

limnan+1an=limnx2(2n+2)(2n+3)=0<1\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0 < 1

Therefore, for any real number xx, the series converges.

Examples

Example 1

Find the sum of the series n=0(1)n(2n+1)!(π2)2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1}.

Solution: This is the sine series with x=π2x = \frac{\pi}{2}.

Therefore, the sum is: sin(π2)=1\sin\left(\frac{\pi}{2}\right) = 1

Example 2

Find the sum of the series n=0(1)n(2n+1)!π2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \pi^{2n+1}.

Solution: This is the sine series with x=πx = \pi.

Therefore, the sum is: sin(π)=0\sin(\pi) = 0

Exercises

Exercise 1

Find the sum of the series n=0(1)n(2n+1)!(π6)2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{6}\right)^{2n+1}.

Reference Answer (2 个标签)
sine series series summation

Solution Approach: This is the sine series, need to determine the value of xx.

Detailed Steps:

  1. Identify series type: n=0(1)n(2n+1)!(π6)2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{6}\right)^{2n+1} is the sine series
  2. Determine parameter: x=π6x = \frac{\pi}{6}
  3. Calculate sum: S=sin(π6)=12S = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}

Answer: The sum is 12\frac{1}{2}.

Exercise 2

Find the sum of the series n=0(1)n(2n+1)!(π3)2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{3}\right)^{2n+1}.

Reference Answer (2 个标签)
sine series series summation

Solution Approach: This is the sine series, need to determine the value of xx.

Detailed Steps:

  1. Identify series type: n=0(1)n(2n+1)!(π3)2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{3}\right)^{2n+1} is the sine series
  2. Determine parameter: x=π3x = \frac{\pi}{3}
  3. Calculate sum: S=sin(π3)=32S = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}

Answer: The sum is 32\frac{\sqrt{3}}{2}.

Exercise 3

Find the sum of the series n=0(1)n(2n+1)!(π4)2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{4}\right)^{2n+1}.

Reference Answer (2 个标签)
sine series series summation

Solution Approach: This is the sine series, need to determine the value of xx.

Detailed Steps:

  1. Identify series type: n=0(1)n(2n+1)!(π4)2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{4}\right)^{2n+1} is the sine series
  2. Determine parameter: x=π4x = \frac{\pi}{4}
  3. Calculate sum: S=sin(π4)=22S = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}

Answer: The sum is 22\frac{\sqrt{2}}{2}.


Summary

Symbols Appearing in This Article

SymbolTypePronunciation/ExplanationMeaning in This Article
xxMathematical symbolVariableVariable in the sine series
π\piGreek letterPiPi, approximately 3.14159
sin\sinMathematical symbolSineSine function
lim\limMathematical symbolLimitRepresents the limit of a sequence or function

Chinese-English Glossary

Chinese TermEnglish TermPhoneticExplanation
Sine seriessine series/saɪn ˈsɪəriːz/Series of the form n=0(1)n(2n+1)!x2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}
Convergenceconvergence/kənˈvɜːdʒəns/Series partial sums have a finite limit
Ratio testratio test/ˈreɪʃiəʊ test/Method to determine convergence using ratio of adjacent terms

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索