导航菜单

Cosine Series

Definition

Definition of Cosine Series

The series n=0(1)n(2n)!x2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} is called the cosine series.

符号说明
SymbolTypePronunciation/ExplanationMeaning in This Article
\sumGreek letterSigmaSummation symbol, representing series
\inftyMathematical symbolInfinityRepresents infinite series, infinite number of terms
n!n!Mathematical symbolFactorialn factorial, n!=n×(n1)××1n! = n \times (n-1) \times \cdots \times 1

Convergence

Convergence of Cosine Series

For any real number xx, the series converges, and its sum is:

n=0(1)n(2n)!x2n=cosx\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = \cos x

证明

Use the ratio test:

an+1an=(1)n+1(2(n+1))!x2(n+1)(2n)!(1)nx2n=x2(2n+1)(2n+2)\frac{a_{n+1}}{a_n} = \frac{(-1)^{n+1}}{(2(n+1))!} x^{2(n+1)} \cdot \frac{(2n)!}{(-1)^n x^{2n}} = -\frac{x^2}{(2n+1)(2n+2)}

limnan+1an=limnx2(2n+1)(2n+2)=0<1\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{x^2}{(2n+1)(2n+2)} = 0 < 1

Therefore, for any real number xx, the series converges.

Examples

Example 1

Find the sum of the series n=0(1)n(2n)!(π3)2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{3}\right)^{2n}.

Solution: This is a cosine series with x=π3x = \frac{\pi}{3}

So the sum is: cos(π3)=12\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}

Example 2

Find the sum of the series n=0(1)n(2n)!π2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \pi^{2n}.

Solution: This is a cosine series with x=πx = \pi

So the sum is: cos(π)=1\cos(\pi) = -1

Exercises

Exercise 1

Find the sum of the series n=0(1)n(2n)!(π4)2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{4}\right)^{2n}.

Reference Answer (2 个标签)
cosine series series summation

Problem-solving approach: This is a cosine series; identify the value of xx.

Detailed steps:

  1. Identify the series type: n=0(1)n(2n)!(π4)2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{4}\right)^{2n} is a cosine series
  2. Determine the parameter: x=π4x = \frac{\pi}{4}
  3. Compute the sum: S=cos(π4)=22S = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}

Answer: The sum is 22\frac{\sqrt{2}}{2}.

Exercise 2

Find the sum of the series n=0(1)n(2n)!(π6)2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{6}\right)^{2n}.

Reference Answer (2 个标签)
cosine series series summation

Problem-solving approach: This is a cosine series; identify the value of xx.

Detailed steps:

  1. Identify the series type: n=0(1)n(2n)!(π6)2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{6}\right)^{2n} is a cosine series
  2. Determine the parameter: x=π6x = \frac{\pi}{6}
  3. Compute the sum: S=cos(π6)=32S = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}

Answer: The sum is 32\frac{\sqrt{3}}{2}.


Summary

Symbols Used in This Article

SymbolTypePronunciation/ExplanationMeaning in This Article
xxMathematical symbolVariableVariable in cosine series
π\piGreek letterPiCircular constant, approximately 3.14159
cos\cosMathematical symbolCosineCosine function
lim\limMathematical symbolLimitRepresents limit of sequence or function

Chinese-English Glossary

Chinese TermEnglish TermIPA PronunciationExplanation
余弦级数cosine series/ˈkəʊsaɪn ˈsɪəriːz/Series of the form n=0(1)n(2n)!x2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}
收敛convergence/kənˈvɜːdʒəns/Partial sums sequence has a finite limit
比值判别法ratio test/ˈreɪʃiəʊ test/Method to determine convergence using ratio of consecutive terms

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索