导航菜单

Arctangent Series

Definition

Definition of Arctangent Series

The series n=0(1)n2n+1x2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} is called the arctangent series.

符号说明
SymbolTypePronunciation/ExplanationMeaning in This Article
\sumGreek letterSigmaSummation symbol, representing series
\inftyMathematical symbolInfinityRepresents infinite series, infinite number of terms

Convergence

Convergence of Arctangent Series
  • Interval of convergence: [1,1][-1, 1]
  • The sum is:

n=0(1)n2n+1x2n+1=arctanx\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = \arctan x

Applications

The arctangent series is particularly useful for calculating the value of π\pi. When x=1x = 1:

arctan1=π4=n=0(1)n2n+1=113+1517+\arctan 1 = \frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots

This is the famous Leibniz series.

Examples

Example 1

Use the arctangent series to approximate arctan12\arctan \frac{1}{2} (using the first 5 terms).

Solution: arctan12121323+15251727+1929\arctan \frac{1}{2} \approx \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + \frac{1}{9 \cdot 2^9}

Calculation yields: arctan120.4636\arctan \frac{1}{2} \approx 0.4636

Exercises

Exercise 1

Use the arctangent series to approximate arctan13\arctan \frac{1}{3} (using the first 4 terms).

Reference Answer (2 个标签)
arctangent series series summation

Problem-solving approach: Use the arctangent series formula and substitute x=13x = \frac{1}{3}.

Detailed steps:

  1. Identify the series type: This is the arctangent series
  2. Determine the parameter: x=13x = \frac{1}{3}
  3. Calculate the first 4 terms:
    • Term 1: 13\frac{1}{3}
    • Term 2: 1333=181-\frac{1}{3 \cdot 3^3} = -\frac{1}{81}
    • Term 3: 1535=11215\frac{1}{5 \cdot 3^5} = \frac{1}{1215}
    • Term 4: 1737=115309-\frac{1}{7 \cdot 3^7} = -\frac{1}{15309}
  4. Summation: arctan1313181+112151153090.3218\arctan \frac{1}{3} \approx \frac{1}{3} - \frac{1}{81} + \frac{1}{1215} - \frac{1}{15309} \approx 0.3218

Answer: arctan130.3218\arctan \frac{1}{3} \approx 0.3218 (approximation using the first 4 terms).


Summary

Symbols Used in This Article

SymbolTypePronunciation/ExplanationMeaning in This Article
xxMathematical symbolVariableVariable in the arctangent series
π\piGreek letterPiCircular constant, approximately 3.14159
arctan\arctanMathematical symbolArctangentArctangent function

Chinese-English Glossary

Chinese TermEnglish TermIPA PronunciationExplanation
反正切级数arctangent series/ɑːkˈtændʒənt ˈsɪəriːz/Series expansion of the arctangent function
收敛区间interval of convergence/ˈɪntəvəl əv kənˈvɜːdʒəns/Interval where the series converges
收敛convergence/kənˈvɜːdʒəns/Sequence of partial sums has a finite limit
莱布尼茨级数Leibniz series/ˈlaɪbnɪts ˈsɪəriːz/Series used to calculate π\pi

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索