导航菜单

Power Series

Definition of Power Series

Definition of Power Series

The series n=0anxn\sum_{n=0}^{\infty} a_n x^n is called a power series, where ana_n are the coefficients and xx is the variable.

符号说明
SymbolTypePronunciation/ExplanationMeaning in This Article
\sumGreek letterSigmaSummation symbol, representing series
\inftyMathematical symbolInfinityRepresents infinite series, infinite number of terms
ana_nMathematical symbolCoefficientCoefficient of the nn-th term in power series
RRMathematical symbolRadius of convergenceRadius where the power series converges

Convergence

Power Series Convergence

There exists a radius of convergence RR such that:

  • When x<R|x| < R, the series converges
  • When x>R|x| > R, the series diverges
  • When x=R|x| = R, convergence must be determined separately

The radius of convergence can be found using the ratio test or root test.

Methods to Find Radius of Convergence

Ratio Test

Ratio Test for Radius of Convergence

If limnan+1an=L\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = L, then:

  • When L=0L = 0, R=+R = +\infty
  • When L=+L = +\infty, R=0R = 0
  • When 0<L<+0 < L < +\infty, R=1LR = \frac{1}{L}

Root Test

Root Test for Radius of Convergence

If limnann=L\lim_{n \to \infty} \sqrt[n]{|a_n|} = L, then:

  • When L=0L = 0, R=+R = +\infty
  • When L=+L = +\infty, R=0R = 0
  • When 0<L<+0 < L < +\infty, R=1LR = \frac{1}{L}

Examples

Example 1

Find the radius of convergence of the power series n=0xnn!\sum_{n=0}^{\infty} \frac{x^n}{n!}.

Solution: an=1n!a_n = \frac{1}{n!}

limnan+1an=limnn!(n+1)!=limn1n+1=0\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0

Therefore, the radius of convergence R=+R = +\infty, meaning it converges for all real numbers xx.

Example 2

Find the radius of convergence of the power series n=0xn\sum_{n=0}^{\infty} x^n.

Solution: an=1a_n = 1

limnan+1an=limn1=1\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} 1 = 1

Therefore, the radius of convergence R=1R = 1, meaning it converges when x<1|x| < 1.

Example 3

Find the radius of convergence of the power series n=0n!xn\sum_{n=0}^{\infty} n! x^n.

Solution: an=n!a_n = n!

limnan+1an=limn(n+1)!n!=limn(n+1)=+\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{(n+1)!}{n!} = \lim_{n \to \infty} (n+1) = +\infty

Therefore, the radius of convergence R=0R = 0, meaning it converges only when x=0x = 0.

Example 4

Find the radius of convergence of the power series n=0xnn2\sum_{n=0}^{\infty} \frac{x^n}{n^2}.

Solution: an=1n2a_n = \frac{1}{n^2}

limnan+1an=limnn2(n+1)2=1\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1

Therefore, the radius of convergence R=1R = 1, meaning it converges when x<1|x| < 1.

Exercises

Exercise 1

Find the radius of convergence of the power series n=0n!xn\sum_{n=0}^{\infty} n! x^n.

Reference Answer (3 个标签)
power series radius of convergence ratio test

Problem-solving approach: Use the ratio test to find the radius of convergence.

Detailed steps:

  1. Identify the series type: n=0n!xn\sum_{n=0}^{\infty} n! x^n is a power series
  2. Determine the coefficients: an=n!a_n = n!
  3. Calculate the ratio: limnan+1an=limn(n+1)!n!=limn(n+1)=+\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{(n+1)!}{n!} = \lim_{n \to \infty} (n+1) = +\infty
  4. Radius of convergence: R=1+=0R = \frac{1}{+\infty} = 0

Answer: The radius of convergence is 00, meaning it converges only when x=0x = 0.

Exercise 2

Find the radius of convergence of the power series n=0xnn2\sum_{n=0}^{\infty} \frac{x^n}{n^2}.

Reference Answer (3 个标签)
power series radius of convergence ratio test

Problem-solving approach: Use the ratio test to find the radius of convergence.

Detailed steps:

  1. Identify the series type: n=0xnn2\sum_{n=0}^{\infty} \frac{x^n}{n^2} is a power series
  2. Determine the coefficients: an=1n2a_n = \frac{1}{n^2}
  3. Calculate the ratio: limnan+1an=limnn2(n+1)2=1\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1
  4. Radius of convergence: R=11=1R = \frac{1}{1} = 1

Answer: The radius of convergence is 11, meaning it converges when x<1|x| < 1.

Exercise 3

Find the radius of convergence of the power series n=0xnn3\sum_{n=0}^{\infty} \frac{x^n}{n^3}.

Reference Answer (3 个标签)
power series radius of convergence ratio test

Problem-solving approach: Use the ratio test to find the radius of convergence.

Detailed steps:

  1. Identify the series type: n=0xnn3\sum_{n=0}^{\infty} \frac{x^n}{n^3} is a power series
  2. Determine the coefficients: an=1n3a_n = \frac{1}{n^3}
  3. Calculate the ratio: limnan+1an=limnn3(n+1)3=1\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{n^3}{(n+1)^3} = 1
  4. Radius of convergence: R=11=1R = \frac{1}{1} = 1

Answer: The radius of convergence is 11, meaning it converges when x<1|x| < 1.

Exercise 4

Find the radius of convergence of the power series n=0xn2n\sum_{n=0}^{\infty} \frac{x^n}{2^n}.

Reference Answer (3 个标签)
power series radius of convergence ratio test

Problem-solving approach: Use the ratio test to find the radius of convergence.

Detailed steps:

  1. Identify the series type: n=0xn2n\sum_{n=0}^{\infty} \frac{x^n}{2^n} is a power series
  2. Determine the coefficients: an=12na_n = \frac{1}{2^n}
  3. Calculate the ratio: limnan+1an=limn2n2n+1=12\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{2^n}{2^{n+1}} = \frac{1}{2}
  4. Radius of convergence: R=112=2R = \frac{1}{\frac{1}{2}} = 2

Answer: The radius of convergence is 22, meaning it converges when x<2|x| < 2.

Exercise 5

Find the radius of convergence of the power series n=0xnn!\sum_{n=0}^{\infty} \frac{x^n}{n!}.

Reference Answer (3 个标签)
power series radius of convergence ratio test

Problem-solving approach: Use the ratio test to find the radius of convergence.

Detailed steps:

  1. Identify the series type: n=0xnn!\sum_{n=0}^{\infty} \frac{x^n}{n!} is a power series
  2. Determine the coefficients: an=1n!a_n = \frac{1}{n!}
  3. Calculate the ratio: limnan+1an=limnn!(n+1)!=limn1n+1=0\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0
  4. Radius of convergence: R=10=+R = \frac{1}{0} = +\infty

Answer: The radius of convergence is ++\infty, meaning it converges for all real numbers xx.


Summary

Symbols Used in This Article

SymbolTypePronunciation/ExplanationMeaning in This Article
xxMathematical symbolVariableVariable in the power series
LLMathematical symbolLimit valueLimit of ratio or root value
lim\limMathematical symbolLimitRepresents limit of sequence or function
n!n!Mathematical symbolFactorialn factorial, n!=n×(n1)××1n! = n \times (n-1) \times \cdots \times 1
n!n!Mathematical symbolFactorialnn factorial, n!=n×(n1)××1n! = n \times (n-1) \times \cdots \times 1

Chinese-English Glossary

Chinese TermEnglish TermIPA PronunciationExplanation
幂级数power series/ˈpaʊə ˈsɪəriːz/Series of the form n=0anxn\sum_{n=0}^{\infty} a_n x^n
收敛半径radius of convergence/ˈreɪdiəs əv kənˈvɜːdʒəns/Radius RR where the power series converges
系数coefficient/kəʊɪˈfɪʃənt/Coefficients ana_n of terms in power series
比值判别法ratio test/ˈreɪʃiəʊ test/Method to determine convergence using ratio of consecutive terms
根值判别法root test/ruːt test/Method to determine convergence using nn-th root
收敛convergence/kənˈvɜːdʒəns/Partial sums sequence has a finite limit
发散divergence/daɪˈvɜːdʒəns/Partial sums sequence has no finite limit
阶乘factorial/fækˈtɔːriəl/n!=n×(n1)××1n! = n \times (n-1) \times \cdots \times 1

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索