导航菜单

Harmonic Series

Definition

Definition of Harmonic Series

The series n=11n\sum_{n=1}^{\infty} \frac{1}{n} is called the harmonic series. The harmonic series is a special case of the pp-series when p=1p = 1.

符号说明
SymbolTypePronunciation/ExplanationMeaning in This Article
\sumGreek letterSigmaSummation symbol, representing series
\inftyMathematical symbolInfinityRepresents infinite series, infinite number of terms

Convergence

Divergence of the Harmonic Series

The harmonic series n=11n\sum_{n=1}^{\infty} \frac{1}{n} is divergent.

证明

Method 1: p-Series Test

The harmonic series is a special case of the p-series with p=11p = 1 \leq 1, so it diverges.

Method 2: Integral Test

It can also be proven using the integral test:

1+1xdx=lnx1+=+\int_1^{+\infty} \frac{1}{x} dx = \ln x \big|_1^{+\infty} = +\infty

The integral diverges, so the series diverges.

Alternative Proofs of Harmonic Series Divergence

Method 1: Grouping Method

Group the harmonic series as follows:

1+12+13+14+15+16+17+18+1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \cdots

=1+12+(13+14)+(15+16+17+18)+= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots

>1+12+12+12+> 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots

=1+12+12+12+= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots

=1+12×=+= 1 + \frac{1}{2} \times \infty = +\infty

Therefore, the harmonic series diverges.

Method 2: Comparison Method

Since 1n1n+1\frac{1}{n} \geq \frac{1}{n+1}, we have:

n=11nn=11n+1=n=21n\sum_{n=1}^{\infty} \frac{1}{n} \geq \sum_{n=1}^{\infty} \frac{1}{n+1} = \sum_{n=2}^{\infty} \frac{1}{n}

Now, n=21n\sum_{n=2}^{\infty} \frac{1}{n} differs from n=11n\sum_{n=1}^{\infty} \frac{1}{n} by only a constant term, so if n=11n\sum_{n=1}^{\infty} \frac{1}{n} converges, then n=21n\sum_{n=2}^{\infty} \frac{1}{n} also converges, which contradicts the divergence of the harmonic series.

Exercises

Exercise 1

Determine the convergence of the series n=11n\sum_{n=1}^{\infty} \frac{1}{n}.

Reference Answer (3 个标签)
harmonic series series convergence p-series

Problem-solving approach: This is the harmonic series, a special case of the p-series.

Detailed steps:

  1. Identify the series type: n=11n\sum_{n=1}^{\infty} \frac{1}{n} is the harmonic series
  2. Determine the p value: p=1p = 1
  3. Check convergence: p=11p = 1 \leq 1, so the series diverges

Answer: The series diverges.


Summary

Symbols Used in This Article

SymbolTypePronunciation/ExplanationMeaning in This Article
nnMathematical symbolNumber of termsNumber of terms in the series
\intMathematical symbolIntegralRepresents definite or indefinite integral
ln\lnMathematical symbolNatural logarithmNatural logarithm function

Chinese-English Glossary

Chinese TermEnglish TermIPA PronunciationExplanation
调和级数harmonic series/hɑːˈmɒnɪk ˈsɪəriːz/n=11n\sum_{n=1}^{\infty} \frac{1}{n}, p-series when p=1p = 1
发散divergence/daɪˈvɜːdʒəns/Partial sums sequence has no finite limit
积分判别法integral test/ˈɪntɪɡrəl test/Method to determine series convergence using integrals
比较判别法comparison test/kəmˈpærɪsən test/Method to determine series convergence by comparison
分组法grouping method/ˈɡruːpɪŋ ˈmeθəd/Method to prove series divergence through grouping

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索