导航菜单

Parametric Functions

Definition

Definition of Parametric Functions

A function relationship determined by parametric equations {x=x(t)y=y(t)\begin{cases} x = x(t) \\ y = y(t) \end{cases} is called a parametric function.

数学语言

The rigorous definition of a parametric function is: for each tt in the parameter domain DD, there exists a uniquely determined (x,y)=(x(t),y(t))(x, y) = (x(t), y(t)), and both x=x(t)x = x(t) and y=y(t)y = y(t) are functions of tt.

Parametric functions describe originally complex curves using two simple functional relationships by introducing parameter t, making them easier to study and compute.

符号说明
SymbolTypePronunciation/ExplanationMeaning in This Document
x(t)x(t)Mathematical Symbolx of tFunction of parameter t for x
y(t)y(t)Mathematical Symboly of tFunction of parameter t for y
ttMathematical SymboltParameter variable
DDMathematical SymbolDParameter domain, range of parameter t

Characteristics

Parametric functions have the following characteristics:

  • Parameter representation: Both independent and dependent variables are expressed through parameter t
  • Parameter elimination possible: Explicit functions can be obtained through parameter elimination
  • Geometric meaning: Geometrically represents curves
  • Directionality: The direction of change of parameter t determines the direction of the curve

Common Parametric Equations

Parametric Equations of a Circle

Parametric equations of a circle with radius r: {x=rcosty=rsint,t[0,2π]\begin{cases} x = r\cos t \\ y = r\sin t \end{cases}, \quad t \in [0, 2\pi]

Parametric Equations of an Ellipse

Parametric equations of an ellipse with semi-major axis a and semi-minor axis b: {x=acosty=bsint,t[0,2π]\begin{cases} x = a\cos t \\ y = b\sin t \end{cases}, \quad t \in [0, 2\pi]

Parametric Equations of a Line

Parametric equations of a line passing through point (x0,y0)(x_0, y_0) with direction vector (a,b)(a, b): {x=x0+aty=y0+bt,tR\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}, \quad t \in \mathbb{R}

Parametric Equations of a Cycloid

Parametric equations of a cycloid: {x=a(tsint)y=a(1cost),tR\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}, \quad t \in \mathbb{R}

Parameter Elimination Methods

Basic Steps

  1. Solve for parameter t from the parametric equations
  2. Substitute the expression for t into the other equation
  3. Simplify to obtain the explicit functional relationship

Example

For the parametric equations of a circle {x=rcosty=rsint\begin{cases} x = r\cos t \\ y = r\sin t \end{cases}:

  1. From the first equation: cost=xr\cos t = \frac{x}{r}
  2. From the second equation: sint=yr\sin t = \frac{y}{r}
  3. Using sin2t+cos2t=1\sin^2 t + \cos^2 t = 1: (xr)2+(yr)2=1(\frac{x}{r})^2 + (\frac{y}{r})^2 = 1
  4. Simplify to obtain: x2+y2=r2x^2 + y^2 = r^2

Derivatives of Parametric Functions

Basic Formula

If {x=x(t)y=y(t)\begin{cases} x = x(t) \\ y = y(t) \end{cases}, then:

dydx=dydtdxdt=y(t)x(t)\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{y'(t)}{x'(t)}

Second Derivative

d2ydx2=ddx(dydx)=ddt(y(t)x(t))dtdx\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d}{dt}(\frac{y'(t)}{x'(t)}) \cdot \frac{dt}{dx}

Exercises

Exercise 1

Find the explicit functional relationship for the parametric equations {x=t2y=t3\begin{cases} x = t^2 \\ y = t^3 \end{cases}.

Reference Answer (5 个标签)
parametric function parameter elimination power function explicit function domain

Problem-solving approach: Obtain the explicit function relationship through parameter elimination.

Detailed steps:

  1. Solve for parameter t from the first equation: t=xt = \sqrt{x} (note x0x \geq 0)
  2. Substitute the expression for t into the second equation: y=(x)3=x3/2y = (\sqrt{x})^3 = x^{3/2}
  3. Therefore, the explicit function is: y=x3/2y = x^{3/2}, domain [0,+)[0, +\infty)

Answer: y=x3/2y = x^{3/2}, domain [0,+)[0, +\infty).

Exercise 2

Find the derivative of the parametric equations {x=costy=sint\begin{cases} x = \cos t \\ y = \sin t \end{cases}.

Reference Answer (5 个标签)
parametric function derivative trigonometric function circle parametric equations implicit differentiation

Problem-solving approach: Use the derivative formula for parametric functions.

Detailed steps:

  1. Calculate x(t)x'(t) and y(t)y'(t): x(t)=sintx'(t) = -\sin t y(t)=costy'(t) = \cos t
  2. Use the derivative formula: dydx=y(t)x(t)=costsint=cott\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{\cos t}{-\sin t} = -\cot t
  3. Since x=costx = \cos t, we have t=arccosxt = \arccos x, substitute to get: dydx=cot(arccosx)=x1x2\frac{dy}{dx} = -\cot(\arccos x) = -\frac{x}{\sqrt{1-x^2}}

Answer: dydx=x1x2\frac{dy}{dx} = -\frac{x}{\sqrt{1-x^2}}.

Exercise 3

Find the explicit functional relationship for the parametric equations {x=ety=et\begin{cases} x = e^t \\ y = e^{-t} \end{cases}.

Reference Answer (5 个标签)
parametric function parameter elimination exponential function inverse proportion function logarithmic function

Problem-solving approach: Obtain the explicit function relationship through parameter elimination.

Detailed steps:

  1. Solve for parameter t from the first equation: t=lnxt = \ln x (note x>0x > 0)
  2. Substitute the expression for t into the second equation: y=elnx=1xy = e^{-\ln x} = \frac{1}{x}
  3. Therefore, the explicit function is: y=1xy = \frac{1}{x}, domain (0,+)(0, +\infty)

Answer: y=1xy = \frac{1}{x}, domain (0,+)(0, +\infty).


Summary

Symbols Used in This Document

SymbolTypePronunciation/ExplanationMeaning in This Document
x(t)x(t)Mathematical Symbolx of tFunction of parameter t for x
y(t)y(t)Mathematical Symboly of tFunction of parameter t for y
ttMathematical SymboltParameter variable
dydx\frac{dy}{dx}Mathematical Symboldy by dxDerivative of y with respect to x
d2ydx2\frac{d^2y}{dx^2}Mathematical Symbold squared y by dx squaredSecond derivative of y with respect to x
x(t)x'(t)Mathematical Symbolx prime of tDerivative of x with respect to t
y(t)y'(t)Mathematical Symboly prime of tDerivative of y with respect to t
R\mathbb{R}Mathematical SymbolBlackboard bold R (Real numbers)Represents the set of real numbers, the set of all real numbers
[0,2π][0, 2\pi]Mathematical SymbolClosed intervalClosed interval from 0 to 2π2\pi

Chinese-English Glossary

Chinese TermEnglish TermPronunciationExplanation
参数函数parametric function/pærəˈmetrɪk ˈfʌŋkʃən/Functions expressed through parametric equations
参数方程parametric equation/pærəˈmetrɪk ɪˈkweɪʒən/Functional equations expressed using parameters
消参parameter elimination/pəˈræmɪtə ɪˌlɪmɪˈneɪʃən/Eliminating parameters from parametric equations to obtain explicit functions
显式函数explicit function/ɪkˈsplɪsɪt ˈfʌŋkʃən/Functions that can directly express y in terms of x
方向向量direction vector/dɪˈrekʃən ˈvektə/Vector indicating the direction of a line
轨迹locus/ˈləʊkəs/Path traced by a moving point
极坐标polar coordinates/ˈpəʊlə kəʊˈɔːdɪneɪts/Coordinate system using radius and angle
链式法则chain rule/tʃeɪn ruːl/Rule for differentiating composite functions
二阶导数second derivative/ˈsekənd dɪˈrɪvətɪv/Derivative of the first derivative of a function

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索