导航菜单

Arcsecant Function

Definition

Definition of the Arcsecant Function

The arcsecant function y=arcsecxy = \operatorname{arcsec} x is the inverse function of the secant function y=secxy = \sec x.

Properties

  • Domain: (,1][1,+)(-\infty, -1] \cup [1, +\infty)
  • Range: [0,π2)(π2,π][0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]
  • Monotonicity: Monotonically increasing in its domain

Graph

Exercises

Exercise1

Given y=arcsecxy = \operatorname{arcsec} x, find its domain and range.

Answer and Explanation (3 个标签)
arcsecant function domain range

Domain: (,1][1,+)(-\infty, -1] \cup [1, +\infty); Range: [0,π2)(π2,π][0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi].

Summary

Symbols Appearing in This Article

SymbolTypePronunciation/ExplanationMeaning in This Article
π\piGreek letterPi (pie)Pi, used to represent the range of the arcsecant function

Bilingual Glossary

Chinese TermEnglish TermPhoneticExplanation
反正割函数arcsecant function/ɑːkˈsiːkənt ˈfʌŋkʃən/The inverse function of the secant function, denoted as y=\arcsecxy = \arcsec x
反正割arcsecant/ɑːkˈsiːkənt/Function name, abbreviated as \arcsec\arcsec
反函数inverse function/ɪnˈvɜːs ˈfʌŋkʃən/A function that is the inverse of the original function
定义域domain/dəʊˈmeɪn/The range of values for the independent variable
值域range/reɪndʒ/The range of values for the function

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索