These problems reinforce core skills: derivative definitions, rule fluency, composite and implicit cases, mean value theorems, L’Hôpital’s rule, and applications such as extrema and curvature.
基础概念
练习 1
Find f′(1) for f(x)=x2+2x+1.
Reference Answer(2 个标签)
derivatives differentials
f′(x)=2x+2, so f′(1)=4. (Using the limit definition yields the same result.)
练习 2
Check continuity and differentiability of f(x)=∣x∣ at x=0.
Reference Answer(2 个标签)
derivatives differentials
limx→0∣x∣=0=f(0) ⇒ continuous. Left derivative =−1, right derivative =1 ⇒ not differentiable.
Differentiation Rules
练习 3
Differentiate f(x)=x3sinx.
Reference Answer(2 个标签)
derivatives differentials
Product rule: f′(x)=3x2sinx+x3cosx.
练习 4
Differentiate f(x)=x+1x2+1.
Reference Answer(2 个标签)
derivatives differentials
Quotient rule: f′(x)=(x+1)2x2+2x−1.
练习 5
Differentiate f(x)=sin(ex2).
Reference Answer(2 个标签)
derivatives differentials
Chain rule (three layers): f′(x)=2xex2cos(ex2).
复合与隐函数
练习 6
Differentiate f(x)=arcsin(x2).
Reference Answer(2 个标签)
derivatives differentials
Let y=arcsin(x2), so x2=siny. Then 2x=cosyy′ and y′=1−x42x.
练习 7
For x3+y3=3xy, find dy/dx.
Reference Answer(2 个标签)
derivatives differentials
3x2+3y2y′=3y+3xy′ ⇒ y′=y2−xy−x2.
练习 8
For x=t2,y=t3, compute dx2d2y.
Reference Answer(2 个标签)
derivatives differentials
dxdy=2t3t2=23t, and dx2d2y=4t3.
Mean Value Theorems
ξ(Xi):中值定理中出现的内部点,读作“克西”。
练习 9
Show that if f is continuous on [a,b], differentiable on (a,b), and f(a)=f(b), then ∃ξ∈(a,b) with f′(ξ)=0.
Reference Answer(2 个标签)
derivatives differentials
Directly by Rolle’s theorem.
练习 10
Prove ∣sinx−siny∣≤∣x−y∣.
Reference Answer(2 个标签)
derivatives differentials
MVT on f(t)=sint gives cosξ=y−xsiny−sinx with ∣cosξ∣≤1.
L’Hopital’s Rule
练习 11
Compute limx→0xsinx.
Reference Answer(2 个标签)
derivatives differentials
00 type → lim1cosx=1.
练习 12
Compute limx→∞exx2.
Reference Answer(2 个标签)
derivatives differentials
Two rounds: ex2x→ex2→0.
练习 13
Compute limx→0+xlnx.
Reference Answer(2 个标签)
derivatives differentials
Rewrite 1/xlnx (∞∞). Derivatives give −x→0.
Applications of Derivatives
练习 14
Find extrema of f(x)=x3−3x2+2.
Reference Answer(2 个标签)
derivatives differentials
f′(x)=3x(x−2) ⇒ critical points 0,2. f′′(0)<0 ⇒ local max at (0,2). f′′(2)>0 ⇒ local min at (2,−2).
练习 15
Tangent to y=lnx at (1,0).
Reference Answer(2 个标签)
derivatives differentials
f′(1)=1 ⇒ y−0=1(x−1) ⇒ y=x−1.
练习 16
Max/min of f(x)=x3−3x2+2 on [0,3].
Reference Answer(2 个标签)
derivatives differentials
Check x=0,2,3: f(0)=2, f(2)=−2, f(3)=2. Max 2, min −2.
Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.